Approximability of the Minimum Weighted Doubly Resolving Set Problem
نویسندگان
چکیده
Locating source of diffusion in networks is crucial for controlling and preventing epidemic risks. It has been studied under various probabilistic models. In this paper, we study source location from a deterministic point of view by modeling it as the minimum weighted doubly resolving set (DRS) problem, which is a strengthening of the well-known metric dimension problem. Let G be a vertex weighted undirected graph on n vertices. A vertex subset S of G is DRS of G if for every pair of vertices u, v in G, there exist x, y ∈ S such that the difference of distances (in terms of number of edges) between u and x, y is not equal to the difference of distances between v and x, y. The minimum weighted DRS problem consists of finding a DRS in G with minimum total weight. We establish Θ(lnn) approximability of the minimum DRS problem on general graphs for both weighted and unweighted versions. This is the first work providing explicit approximation lower and upper bounds for minimum (weighted) DRS problem, which are nearly tight. Moreover, we design first known strongly polynomial time algorithms for the minimum weighted DRS problem on general wheels and trees with additional constant k ≥ 0 edges.
منابع مشابه
On Approximability of the Independent/Connected Edge Dominating Set Problems
We investigate polynomial-time approximability of the problems related to edge dominating sets of graphs. When edges are unit-weighted, the edge dominating set problem is polynomially equivalent to the minimum maximal matching problem, in either exact or approximate computation, and the former problem was recently found to be approximable within a factor of 2 even with arbitrary weights. It wil...
متن کاملEdge-Dominating Set Problem
We study the approximability of the weighted edge-dominating set problem. Although even the unweighted case is NP-Complete, in this case a solution of size at most twice the minimum can be efficiently computed due to its close relationship with minimum maximal matching; however, in the weighted case such a nice relationship is not known to exist. In this paper, after showing that weighted edge ...
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملA note on the hardness of approximating the k-way Hypergraph Cut problem
We consider the approximability of k-way Hypergraph Cut problem: the input is an edge-weighted hypergraph G = (V, E) and an integer k and the goal is to remove a min-weight subset of the edges such that the residual graph has at least k connected components. When G is a graph this problem admits a 2(1 − 1/k)-approximation [8], however, there has been no non-trivial approximation ratio for gener...
متن کاملCapacity Inverse Minimum Cost Flow Problem under the Weighted Hamming Distances
Given an instance of the minimum cost flow problem, a version of the corresponding inverse problem, called the capacity inverse problem, is to modify the upper and lower bounds on arc flows as little as possible so that a given feasible flow becomes optimal to the modified minimum cost flow problem. The modifications can be measured by different distances. In this article, we consider the capac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014